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ABSTRACT

Online chatting is gaining popularity and plays an increasingly

significant role in software development. When discussing func-

tionalities, developers might reveal their desired features to other

developers. Automated mining techniques towards retrieving fea-

ture requests from massive chat messages can benefit the require-

ments gathering process. But it is quite challenging to perform

such techniques because detecting feature requests from dialogues

requires a thorough understanding of the contextual information,

and it is also extremely expensive on annotating feature-request

dialogues for learning. To bridge that gap, we recast the traditional

text classification task of mapping single dialog to its class into

the task of determining whether two dialogues are similar or not

by incorporating few-shot learning. We propose a novel approach,

named FRMiner, which can detect feature-request dialogues from

chat messages via deep Siamese network. We design a BiLSTM-

based dialog model that can learn the contextual information of a

dialog in both forward and reverse directions. Evaluation on the real-

world projects shows that our approach achieves average precision,

recall and F1-score of 88.52%, 88.50% and 88.51%, which confirms

that our approach could effectively detect hidden feature requests

from chat messages, thus can facilitate gathering comprehensive

requirements from the crowd in an automated way.
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Figure 1: Example chat message from AngularJS project,

where requests to desired features are buried in the massive

chat history.

1 INTRODUCTION

Recent studies reported that the usage of online chatting is gaining

popularity and plays an increasingly significant role in software

development, having replaced emails in some cases [35, 56, 57].

Developers are turning to public workplace chat platforms, such

as Slack, IRC, HipChat, Gitter, and Freenode to share opinions and

interesting insights, discuss how to resolve defects as well as what

features to implement in future [9].

Although developers reveal their desired features when commu-

nicating with other developers, the open and crowding nature of

online chatting makes these feature-request dialogues get quickly

flooded by newly incomingmessages. Typically, the feature requests

discussed in online chatting are likely to be buried and ignored if

they are not documented. Taken the chat messages from AngularJS

project as an example (Figure 1), developer P and F posted their

questions in online chatting. In the beginning, their intentions are

asking for help from other developers to seek feasible solutions

to problems. After chatting with other developers, they realized

that the existing system could not behave the way they want. Then
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their intentions shift from asking for solutions to requesting fea-

tures. P requests for “something like ng-true-value/ng-false-value

for reactive checkbox”, and F requests that “the angular cli can put

all my services into services folder”. In this work, we consider dia-

logues that contain requests for new functionalities/enhancements

as feature-request dialogues. In practice, the release team monitors

a variety of communication channels to have multiple sources of

information that could be relevant to the next release [51, 61]. If

the release team could acknowledge those hidden feature requests

from chat messages, their next release planning may have the op-

portunity to maximize the stakeholder satisfaction by considering

more feature requests [50].

Automated mining techniques towards retrieving valuable infor-

mation from massive chat messages are badly needed for gathering

comprehensive feature requests from a large number of users, which

contribute to requirements elicitation and release planning, and

in turn, promote the success of software development [6, 21, 25].

Although the chat messages could be a large volume and embed-

ded with feature requests over time, it is quite challenging to mine

massive chat messages due to the following barriers.

Dialog-wise analysis. Analyzing dialogues from chat messages

differs from regular text mining tasks in that it needs to consider

contextual information among the dialog-wise scope when un-

derstanding one single sentence. Therefore, existing studies on

sentence-wise feature request detection [13, 25, 55] cannot be di-

rectly utilized for this task. For example, the sentence “We need

to add vertical Navbar option” is classified as a feature request by

sentence-wise techniques. Butwhen posted in online chat, following-

up conversation pointed out the existing functionality can fulfill

that request in an alternative way. Moreover, the sentence-wise

detection results will be inaccurate as a large number of off-topic

sentences will be identified as feature requests in the chat messages,

e.g., “I really need to get my programming skills back.”, “I would

like to get some coffee and cookies.”

Extremely expensive annotation. The chat messages are typ-

ically large in size. Finding the feature requests dialogues among

the massive chat messages is like looking for a needle in a haystack.

It is extremely expensive to annotate feature requests from chat

messages due to the high volume corpus and a low proportion of

ground-truth data. Only a few labeled chat messages are catego-

rized into feature request types. How to make the maximum use

of the few labeled data to accurately classify the unlabeled chat

messages becomes a critical problem.

Entangled and noisy data. Chat messages are typically high-

volume and contain informal conversations covering a wide range

of topics. Two or more developers synchronously interact with

each other where their utterances are largely entangled in the chat

messages. Moreover, there exist noisy utterances such as dupli-

cate and off-topic messages in chat messages that do not provide

any valuable information. The entangled and noisy data poses a

difficulty to analyze and interpret the communicative dialogues.

In this work, we take the first step towards dialog-wise technique

that aims to automatically detect hidden feature requests posted

in chat messages. we propose a novel approach, named FRMiner,

which can detect feature-request dialogues from chat messages

via deep Siamese network. To better understand the contextual

information in the dialog-wise scope, we first build a context-aware

dialog model based on a bidirectional LSTM (BiLSTM) structure

that can deeply learn the contextual information of a dialog in both

forward and reverse directions. Inspired by the few-shot learning

techniques that aim to build performance prediction models by uti-

lizing insufficient labeled resources, we recast the traditional text

classification task of mapping single dialog to its class into the task

of determining whether two dialogues belong to the same or differ-

ent class. Hence, we combine context-aware dialog models with the

Siamese network to learn the similarity between a pair of dialogues

rather than the patterns of a specific class. The prediction result

of a feature-request dialog can be inferred based on the similarity

prediction and the observed class of its partner dialog in the pair. To

evaluate the proposed approach, we annotate 1,035 dialogues taken

from three popular open-source projects. The experimental results

show that our approach significantly outperforms two sentence-

wise classifiers and four traditional text classification approaches

with average precision, recall and F1-score of 88.52%, 88.50%, and

88.51%. The results confirm that our approach could effectively de-

tect hidden feature requests from chat messages, thus can facilitate

gathering comprehensive requirements from a large number of

users in an automated way.

The major contributions of this paper are as follows.

• We are the first to promote detecting hidden feature requests

from massive chat messages that can benefit comprehensive

requirements gathering.

• We introduce a solution that can effectively predict feature-

request dialogues based on limited labeled data by incor-

porating Siamese Network, which significantly relieves the

burden of annotating supervised data.

• Weevaluate our approach on three active open-source projects,

and an empirical comparison shows that the proposed ap-

proach outperforms existing studies and four text classifica-

tion approaches.

• Publicly accessible dataset and source code1 to facilitate the

replication of our study and its application in other contexts.

2 BACKGROUND

This section describes three key technologies related to this re-

search: TextCNN, BiLSTM, and few-shot learning techniques. We

include them here because our work is based on these technologies.

2.1 TextCNN

Dialogues in chatmessages are the form of textual sentences recorded

in the chronological order that were discussed by a community of

developers during online communications. Modeling sentence rep-

resentation is the foundation of high-level dialog analysis. In this

paper, we represent sentences by using TextCNN [30], which has an

advantage over learning on insufficient labeled data as it employs

concise network structure and a small number of parameters.

TextCNN is a classical method for sentence modeling which

uses a shallow Convolution Neural Network (CNN) [32] to model

sentence representation. CNN is one kind of deep learning models

that has been widely used in computer vision. It uses several con-

volution kernels to capture local information as the receptive field,

1https://github.com/FRMiner/FRMiner
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then the global representation is produced with these local infor-

mation. Analogously, in Natural Language Processing (NLP), CNN

can aggregate n-gram information and model sentence represen-

tation. TextCNN takes the pre-trained or random generated word

embedding as an input. The dimension of its output depends on the

number and the size of convolution kernels. A n-length sentence

can be represented as a matrix with a shape of n ×d , where d is the

dimension of word embedding. Each kernel w ∈ Rkd , where k is
the size of convolution kernel, is applied to a window of k words to
be mapped into a new one-dimension vector. Let Xi :i+k represents

the concatenation of k-gram words in the original sentence, and

then a convolution operation will be performed on it. The output

of the convolution layer can be computed as oi = f (w · Xi :i+k + b)
where b is a bias term and f is an activation function. Given the
length l of a sentence and the convolution kernel size k , we can
get the representation of the sentence, whose size is l − k + 1. The
convolution layer is followed by a max polling layer, which can

capture the key information with the highest value.

To obtain more sufficient semantic information ensembled by

different scales of local information, multiple convolution kernels

with different sizes are applied to the sentence. Hence, for a sen-

tence, given n ×m convolution kernels, where n is the number of
different sizes of kernels, andm is the number of kernels of each

size, we can get the sentence representation with size of n ×m,
which encodes the different scales of local information into a global

representation of the sentence.

2.2 Bidirectional LSTM

Analyzing dialogues from chat messages is a high-level text min-

ing task as it needs to consider contextual information among

the dialog-wise scope when understanding one single sentence.

In this paper, we utilize the Bidirectional Long Short Term Mem-

ory network (BiLSTM), regarding the sentences of dialogues as

sequential items, to capture the contextual information, where the

representations of sentences are embedded by TextCNN. BiLSTM

was proposed by Graves et al. [20] to learn bidirectional informa-

tion for the sequence learning task. BiLSTM stacks two standard

Long Short Term Memory network (LSTM) [23] layers with op-

posite directions to learn the one-way representation respectively.

Then it combines the forward and backward representations as

the bidirectional embedding. Long Short Term Memory network

(LSTM) is an optimized Recurrent Neural Network (RNN) structure

based on gate mechanism that was proposed by Hochreiter et al.

[23]. LSTM utilizes gate mechanism to filter key information and

pass them down to the long sequence. An LSTM cell composes of

input gate, forget gate, cell state, and output gate. The outputs of

LSTM cell gates can be specified as follows:

⎡⎢⎢⎢⎢⎢⎢⎣

it

ft

c̃t
ot

⎤⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎣

σ
σ

tanh
σ

⎤⎥⎥⎥⎥⎥⎥⎦
(
W

[
xt

ht−1

]
+ b

)

ct = c̃t � it + ct−1 � ft

ht = ot � tanh (ct )

where xt is the i
th token in the input sequence;W is the weight

matrix of LSTM cells; b is the bias term; σ denotes logistic sigmoid

activation function, and tanh denotes hyperbolic tangent activation

function; � denotes element-wise multiplication.

Hence, the final representation of BiLSTM can be formed as

h = [
−→
h ⊕

←−
h ], where

−→
h and

←−
h denote the outputs of two LSTM

layers respectively, and ⊕ is concatenate operation.

2.3 Few-shot learning

Deep learning has gained significant success both in the field of

computer vision and NLP. But it relies on adequate volume of train-

ing data heavily, and has difficulty in performing well when the

labeled resource is insufficient. Automated mining in chat messages

also faces the insufficient labeled resource problem. In online chat-

ting, a large community of developers create plenty of discussions

in a short time. It is extremely time-consuming to annotate a large

number of dialog data for learning effective models since they are

not only long but also require domain knowledge to thoroughly

understand. Few-shot learning approaches are proposed to over-

come these constraints [64]. The few-shot learning approaches can

be classified into the following three categories [10]. Model-based

approaches aim at learning projectors from few labeled data to

taxonomies through model designing. Optimizer-based approaches

adjust the traditional gradient descent optimizer method to fit the

data. Metric-based approaches classify samples through learning

similarity metric functions.

In this paper, we leverage a metric-based few-shot learning tech-

nique, named Siamese network [8], which is widely used to mea-

sure the semantic similarity among texts or images [45]. Traditional

classification models are trying to learn a mapping from a single

instance to its class, but they cannot always work well when there

is low labeled resource data available. Different from the traditional

approaches, Siamese network takes pairs of instances as inputs,

aiming at learning key characteristics that determine whether the

two instances belong to the same or different class. It consists of

two identical sub-components that not only share model structure

but also parameters to encode the pairs of instances respectively.

Intuitively, it is easier for us to determine whether two dialogues

are similar rather than given the exact class for each dialog. Since

Siamese network takes pairs as inputs, the dataset is converted

from element-wise to pair-wise, and can be augmented with per-

mutations.

3 APPROACH

Figure 2 demonstrates the overall framework of our approach. We

construct the training dataset by disentangling dialogues in the

chat messages. Then we build a hierarchical context-aware dialog

model for each dialogue. The context-ware dialog model encodes

dialogues by BiLSTM structure which uses TextCNN-based sen-

tence embedding as inputs. After that, we build a Siamese network

with two identical context-aware dialog models. Finally, we infer

the predictive class based on the probabilities produced by Siamese

network and the actual labels of golden dialogues in the paired

instance.

3.1 Dialogues Disentanglement

Chatting channels is one type of synchronous textual communica-

tion among a community of developers. Messages in chats form

stream information, with conversations often entangling such as a

single conversation thread is interleaved with other conversations.
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Figure 2: The Overview of FRMiner

Dividing chat messages into a set of distinct conversations is an

essential prerequisite for any kind of high-level dialogue analysis.

We leverage the state-of-the-art technique for conversation disen-

tanglement proposed by Kummerfeld et al. [33]. Their model is

trained from 77,563 manually annotated messages of disentangled

dialogues from online chatting. It is a feedforward neural network

with 2 layers, 512 dimensional hidden vectors, and softsign non-

linearities. The input of the model is a 77 dimensional vector, where

each element is a numerical feature extracted from the original

conversation texts, that include, time interval from previous chat

messages posted by the current user, is there a target user in the

chat content, do two chat texts contain the same words and so on.

Figure 3 is a demonstration of the dialogues before and after disen-

tanglement. The model can achieve relatively good performance

with 74.9% precision and 79.7% recall.

Figure 3: Example of dialogues before and after disentangle-

ment [33]. These curves with different colors represent the

links of different dialogues after disentanglement.

3.2 Build Context-aware Dialog Model

Wedesign a hierarchical context-ware dialogmodel that can capture

the contextual information as well as the semantic meaning of each

sentence in a dialog. As shown in Figure 4, the context-aware dialog

model consists of four layers: input layer, sentence embedding layer,

dialog embedding layer, and output layer.

Input layer.We first tokenize the sentences into tokens as the

basic terms. To obtain a better performance, we utilize the 50 dimen-

sion Glove word embeddings [49] that are pre-trained on 6 billion

words of Wikipedia and Gigword corpus as the initial vectors of

the corresponding words. Moreover, inspired by previous works

[58] [55], we notice that part-of-speech (POS) patterns or templates

obviously exist in feature-request texts. Intuitively, the POS tag

can benefit semantic understanding by introducing explicit lexical

information. Therefore, we add POS tag information into word rep-

resentation to enhance its feature. Specifically, each type of POS tag

will be initialized as a random vector with uniform distribution and

optimized during training. Hence, each word can be represented

aswi = [wei ⊕ posi ], wherewei denotes the corresponding word
embedding and posi denotes the embedding of the POS tag of the
word.

LSTM 
Cell

LSTM
Cell

LSTM 
Cell

LSTM 
Cell

LSTM 
Cell

LSTM 
Cell

LSTM 
Cell

LSTM 
Cell

backward

forward

Softmax Output layer

Dialog 
Embedding layer

Sentence 
Embedding layer

Input layer

Figure 4: Hierarchical Context-aware Dialog Model
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Sentence embedding layer. After transforming the original

sentence into a matrix stacked with word embedding and POS tag

embedding, we feed the embedding matrix into TextCNN to obtain

the sentence representation. Details of representing sentences by

TextCNN have been introduced in Section 2.1.

Dialog embedding layer. In the dialog embedding layer, we

use a sequence of sentence embeddings to represent a dialog. Each

embedded sentence acts as a token when inputting the BiLSTM

encoder according to their sequences in the dialog. After encoding

BiLSTM, the bidirectional contextual information of the dialog will

be learned.

Output layer. In the output layer, we combine the two direction

representations
−→
h and

←−
h encoded by BiLSTM as the output vector

of the dialog, which can be presented as h = [
−→
h ⊕

←−
h ].

3.3 Construct Siamese Dialog Classification
Network

In order to alleviate the insufficient labeled data problem, we con-

struct the Siamese dialog classification network that can augment

the dataset by recasting the traditional text classification task of

mapping single dialog to its class into the task of determining

whether two dialogues belong to the same or different classes. For

the purpose of clarity, we will use feature dialog and non-feature

dialog in the rest of this paper to refer to the dialogues that are

requesting features and dialogues that are not requesting features.

The dashed box of ‘3.3’ in Figure 2 presents the detailed archi-

tecture. The Siamese dialog classification network contains two

context-aware dialog models that share structure and parameters

to encode a pair of dialogues to d1 and d2 respectively. We use the

combination forms of d1 and d2, [d1 ⊕ d2], as representations of
the relation between the two dialogues. Then the representation of

the relation between a pair of dialogues is projected from the dia-

log embedding to a similarity metric. Due to explicit equations for

similarity measures, such as Cosine Similarity [24] and Euclidean

Distance [24], usually used to measure the closeness between vec-

tors in linear space, they are not suitable for complex dialog in

semantic space. Therefore, we employ similarity function learned

during training neural network. As the diff or same label of two

dialogues can be obtained, we can train a similarity layer in the

neural network. It is like a black-box component. The inputs are

embedded representations of two dialogues with ‘same’ or ‘diff’

labels, the outputs are their similarity.

We train the Siamese Dialog Classification Network according

to the following steps. (1) We divide the dataset into training and

testing dataset randomly. Train_d is the original dataset that em-

ploys dialogues with label ‘feature’ or ‘non-feature’ as entries. (2)

Typically, the size of labeled dialogues is insufficient for training

effective learning-based models. To overcome that issue, we aug-

ment Train_d into Train_p by sampling a pair of dialogues from

Train_d with label ‘same’ or ‘diff’ as one entry of Train_p. More

specifically, for each dialog in training dataset, we randomly select

a positive partner with ‘feature’ label, and a negative partner with

‘non-feature’ label from training dataset Train_d. For example, if

the two dialogues are all feature dialog or non-feature dialog, we

will assign the pair with label-‘same’, otherwise ‘diff’. Due to the

one-positive-one-negative sampling policy, our training data can

be balanced naturally. Besides, suppose we havem feature dialogues

and n non-feature dialogues in Train_d, we can augment the origin

data set to size of
(m
2

)
+
(n
2

)
+m × n in Train_p. Finally, since each

pair of dialogues belongs to either ‘same’ class or ‘diff’ class, the

output of similarity measure is a 2-length vector [score1, score2]
that represents the scores of the two classes, where scorei ∈ R. We

perform softmax on the 2-length vector, which can be specified as

So f tmax(socrei ) =
escorei∑2
j=1 e

scorej

Then the [score1, score2] can be normalized to probabilities [p, 1−p],
where p ∈ [0, 1].

3.4 Infer Class Probability

The output of Siamese dialog classification network is the prob-

abilities that indicating whether two dialogues are same or diff.

But what we need is the probabilities that indicating whether a

dialog is a feature dialog or not, thus, we need to infer the label

of a dialog based on the probabilities and the actual label of an-

other dialog in the pair instance. For example, we sample a pair

< Dialoд1,Dialoд2 >, where Dialoд1 is the golden dialog sampled
from train dataset with observed ‘non-feature dialog‘ label, and

Dialoд2 is the unknown dialog to be predicted. We input the pair

of them into the Siamese dialog classification network, then a pre-

diction for deciding the two dialogues are same or diff is made.

Suppose the prediction is diff, then we can infer that the class of

Dialoд2 is a feature dialog. If the actual label of Dialoд2 is a feature
dialog, it indicates that this prediction made by our model is true

positive. Otherwise, we get a false positive prediction. To obtain

a more reliable predict result, we employ the vote strategy during

predicting phrase. For each unknown dialog, we construct k paired
instances by sampling k different golden dialogues. After passing
these pairs into FRMiner, we can get l instances which indicate the
unknown one is a feature dialog and k − l instances which indicate
it is a non-feature dialog based on the predictions of FRMiner and

the labels of golden dialogues. If l is greater than k
2 , then we assign

the predicted dialog with ‘feature dialog’ label, vice versa.

3.5 Tool Implementation

We implement our proposed approach, FRMiner, using Allennlp

[16] which is an open-source NLP library built on PyTorch [15].

Implementation details. For these hyper-parameters, we use

grid search [7] as the parameter selection method to obtain the best

performance. The dimension of POS tag embedding is 50, the same

as word embedding. Then, we can use s = [w1,w2 . . .wn ] as the

representation of sentences, where wi = [wei ⊕ posi ] . To obtain
more sufficient semantic information ensembled by different scales

of local information, multiple convolution kernels with different

sizes are applied to the sentence. We set 4 different kernel sizes

which are 2, 3, 4, 5 respectively and 25 feature maps for each kernel.

The output dimension of BiLSTM is 300 (150 for each direction). We

use a linear layer as the similarity layer to project the 300 dimension

vector to two values that represent the probability scores of two

classes. Since the task can be regarded as a classification problem,

we use cross-entropy as the loss function.
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Optimization. In addition, to avoid the over-fitting problem,

we apply dropout [59] on the input embeddings with 0.1 drop rate,

which means, 10% neuron cell will be randomly masked to reduce

the parameters that need to be trained in each batch training. We

also use the strategy of early stopping [52]. If the performance on

the test dataset did not promote for 10 epochs, the training process

will be stopped.

4 EXPERIMENTAL DESIGN

4.1 Research Questions

Our evaluation addresses the following three research questions.

RQ1: How effective is our approach for detecting hidden

feature requests? To investigate the effectiveness of our approach,

we conduct 3-fold cross-validation on detecting feature dialogues

from chat messages of three open-source projects. We also compare

the performances of two sentence-wise approaches that classify

sentences of online discussions into feature requests and other types.

We adapt the two approaches to our task by predicting dialogues

that contain feature-request sentences as feature dialogues. Besides,

we examine the performances of four widely used classification

methods on the limited labeled resources to perceive the difficulties

of automated feature request mining in chat messages.

RQ2: How does the Siamese Network facilitate feature re-

quest detection? To examine the performance enhancement in-

troduced by the Siamese Network, we construct p-FRMiner, which

is a plain FRMiner without incorporating Siamese Network tech-

nique. Detailed difference between FRMiner and p-FRMiner will

be described in Section 4.3. We then compare the performance of

p-FRMiner that are directly trained by dialog-instances, with the

performance of FRMiner that are trained by pair-instances. Then

we increasingly enlarge the size of the training pair-instances to

examine the relationship between performance enhancement and

data augment.

RQ3: Does our approach work well in cross-project vali-

dation? RQ3 examines the generalizability of our approach via

cross-project validation on three open-source projects. We itera-

tively use two projects for training and the reserving one for testing.

We also conduct cross-project validation on baseline approaches.

4.2 Data Preparation

Our experimental data is crawled by Scrapy [53] from three open-

source projects: AngularJS [17], Bootstrap [60], and Chromium

[18]. We select the three projects for the following reasons. First,

they are under active developments. Second, large communities are

formed around those projects. Third, developers from these projects

actively use online chatting to share opinions, interesting insights,

and discuss what features to implement in the future. For example,

in the last three years, an average of 2,823 utterances are made per

week in AnguluarJS community. Moreover, their historical chat

messages are all documented and publicly accessible [1], which

provide rich resources for mining valuable information. Our data

is collected in the following steps:

Step 1: Preprocess. We first normalize non-ascii characters like

emojis to standard ascii strings. Some low-frequency tokens cannot

contribute to the result of classification such as URL, email address,

code, HTML tags, and version numbers in chatmessages.We replace

Table 1: The statistic of labeled dialogues

Massive chat messages Sample

Duration #dialog #sentence #dialog #sentence #FR

AngularJS 2016.5-2019.4 38266 406553 316 9220 36

Bootstrap 2014.7-2019.5 10358 58871 379 2371 76

Chromium 2015.5-2019.7 16804 118890 340 4465 27

Total 65428 584314 1035 16056 139

them with specific tokens <URL>, <EMAIL>, <HTML>, <CODE>, and

<ID> respectively. We utilize Spacy [2] to tokenize sentences into

terms. To alleviate the influence of word morphology, we then

perform lemmatization and lowercasing on terms with Spacy.

Step 2: Dialogues Sampling. After disentanglement, there are

a large number of identified chat dialogues. To observe the charac-

teristics of the entire dialogues population, we randomly sample

400 dialogues from the three projects. Then we excluded unreadable

dialogues: 1) Dialogues that are written in non-English languages;

2) Dialogues that contain toomuch code or stack traces; 3) Low qual-

ity dialogues such as dialogues with many typos and grammatical

errors. 4) Dialogues that involve channel robots.

Step 3: Ground-truth Labeling. The labeled dialogues are used

as the ground-truth dataset for method definition and performance

evaluation. To guarantee the correctness of the labeling results, we

built an inspection team, which consisted two senior researchers

with four Ph.D candidates. All of them are fluent English speakers,

and have done either intensive research work with software devel-

opment or have been actively contributing to open-source projects.

We divided the team into two groups. Each group consisted a leader

(senior researcher) and two members. The leaders trained members

on how to label and provided consultation during the process. The

labeling results from the members were reviewed by the leaders

while results from the leaders were reviewed by other leaders. We

only accepted and included dialogues to our dataset when the dia-

logues received full agreement among the groups. When an dialog

received different labeling results, we hosted a discussion with all

the six people to decide through voting.

In total, we collected 65,428 dialogues from three open-source

projects, and spent 720 person-hours on annotating 1,035 (1.6%)

dialogues. The detailed characteristics of labeled dialogues are de-

scribed in Table 1. The last column ‘#FR’ denotes the number of

feature dialogues.

4.3 Experiment Settings

We conduct 3-fold cross-validation [31] on the dataset collected

from three open-source projects. We randomly divide our dataset

into 3 parts. We use 2 of those parts for training and reserve one part

for testing. We repeat this procedure 3 times each time reserving

a different part for testing. The experimental environment is a

desktop computer equipped with an NVIDIA 1060 GPU, intel core

i7 CPU, 16GB RAM, running on Ubuntu OS.

Experiment I (RQ1) To prove the effectiveness of our approach,

we select two advanced sentence-wise approaches and four text

classification approaches as baselines. Detail information about

baselines will be introduced in section 4.4. For the two sentence-

wise approaches, we use the codes and models provided in the

publications. For the four text classification approaches, we use the

codes provided by official released packages [19] [14]. We apply

the random over-sampling [36] to tackle with imbalance dataset.

We extract the Term Frequency and Inverse Document Frequent
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(TFIDF) [27] as feature vectors for each dialog. We train and fine-

tune hyper-parameters by grid search for the four text classification

approaches to achieve their best performances.

Experiment II (RQ2) In this experiment, we compare FRMiner

with p-FRMiner and investigate how does the data augment im-

proves performance.Note that p-FRMiner is different with FR-

Miner in that p-FRMiner is a classification model for a single dialog

which is based on the context-aware dialog model (introduced in

Section 3.2) following with an additional classification layer. The

architecture of FRMiner can be derived from p-FRMiner by the

following steps: 1) remove the top top-classification layer of p-

FRMiner; 2) concatenate the outputs of two p-FRMiner that sharing

weights; 3) add a similarity layer. First, we use the same size of

data to train FRMiner and p-FRMiner, and observe the performance

enhancement. Then we augment the training dataset of FRMiner

5, 10, 20, and 30 times to investigate the performance changes.

Since FRMiner can tackle with imbalanced dataset issue by apply-

ing the Siamese network while p-FRMiner can not, we balance the

samples by applying random over-sampling [36] when training

p-FRMiner. To ensure the correctness of our experiments, FRMiner

and p-FRMiner are trained with the same hyper-parameters, includ-

ing dimensions for each layer, depth of the network, and learning

rate.

Experiment III (RQ3) To validate whether our approach is

generalizable to unfitted projects, we trained the FRMiner on two

projects and evaluate on third projects. We also evaluate other

baselines on the cross-project dataset with the identical hyper-

parameters of experiment II.

4.4 Baselines

To demonstrate the advantages of FRMiner, we compare FRMiner

with two advanced sentence-wise approaches as our baselines.

CNN-based Classifier (CNC) [25]. It is the state-of-the-art

learning technique to classify sentences in comments taken from

online issue reports. They proposed a convolution neural network

(CNN) based approach to classify sentences into seven categories

of intentions: Information Giving, Information Seeking, Feature

Request, Solution Proposal, Problem Discovery, Aspect Evaluation,

and Meaningless. We utilize the Feature Request category to predict

dialogues that contain feature-request sentences as feature-request

dialogues.

Rule-based Classifier (FRA) [55]. It is the state-of-the-art rule-

based technique to classify sentences in feature requests from online

issue tracking systems. They proposed 81 fuzzy rules to classify

sentences into 6 types. We consider the dialogues that contain the

Intent type of sentences are predicted to be feature dialogues, and

dialogues do not contain the Intent type of sentences are predicted

to be non-feature dialogues.

Machine-learning-basedClassifiers.Naive Bayesian (NB) [38]

is a simple generation model for text classification based on bag-

of-words assumptions and Bayesian rules. It conducts the joint

probability of a sentence through prior probability and conditional

probability learned by the model and training data. Then, given

a sentence, it can deduce the probabilities of all the taxonomies.

Random Forest (RF) [34] is an ensemble machine learning method

that is constructed with several trees, and each tree can contribute

Figure 5: The average performances in 3-fold validation

to the final classification result. Gradient Boosting Decision Tree

(GBDT) [29] is another kind of ensemble method, and the difference

with RF is that its trees are decided by the residual error brought by

the previous trees. When training GBDT, we set the initial learning

as 1.0 and the max depth of trees as 1. We trained 100 epochs for

FT, and set the initial learning rate as 1.0, the window size of input

n-gram as 2. FastText (FT) [28] is the state-of-the-art text classifica-

tion approach with a shallow neural network that is similar to the

architecture of word2vec [42]. When training RF, we set the max

depth of trees as 2.

4.5 Performance Measures

When evaluating the effectiveness of FRMiner towards detection

feature requests from chat messages, we used the following metrics:

(1) Precision, which refers to the ratio of the number of correct

predictions of feature dialogues to the total number of predictions of

feature dialogues; (2) Recall, which refers to the ratio of the number

of correct predictions of feature dialogues to the total number of

feature dialogues in the golden test set; and (3) F1-Score, which is

the harmonic mean of precision and recall.

5 RESULTS AND ANALYSIS

5.1 Answering RQ1

Figure 5 presents the average performances achieved by different

approaches in 3-fold cross-validation, and Table 2 presents the de-

tailed performances for each project. The best results of precision,

recall, and F1-score are highlighted in bold. We can see that FR-

Miner achieves the best results for all the three projects, with an

average of 88.52%, 88.50%, and 88.51% in precision, recall, and F1-

score. We also note that p-FRMiner performs better than all the

baseline approaches, which indicates that memorizing contextual

information in the BiLSTM dialog model can benefit the text classi-

fication task in chat messages. We further evaluate and analyze the

improvement of FRMiner over p-FRMiner in section 5.2.

For the two sentence-wise approaches, the CNN based classi-

fier can only achieve 17.33% F1-score on average, mainly because

that the CNC model is trained by sufficient data from the domain

of issue comments instead of feature dialogues. However, it still

achieves 48.55% recall on average, which indicates that there might

be common patterns between the two domains. Transfer learning

techniques might help transfer the related common knowledge
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Table 2: The performance achieved by different approaches for each project in intra-project validation

Approach

Performance AngularJS Bootstrap Chromium

Precision Recall F1 Precision Recall F1 Precision Recall F1

Our approach
FRMiner 90.28% 89.73% 90.00% 86.28% 88.78% 87.52% 89.00% 87.00% 88.00%

p-FRMiner 31.71% 54.17% 40.00% 50.00% 47.80% 48.98% 14.00% 44.00% 20.00%

Existing studies
CNC 7.70% 44.44% 13.13% 16.38% 34.21% 22.13% 9.56% 67.00% 16.73%

FRA 13.67% 80.33% 23.35% 23.00% 48.67% 31.00% 12.00% 81.00% 20.00%

Text classification

NB 20.00% 27.67% 22.33% 25.67% 62.00% 36.00% 14.33% 44.33% 21.00%

GBDT 36.00% 22.33% 27.33% 41.67% 35.67% 38.33% 9.33% 7.33% 8.00%

RF 52.67% 11.00% 16.33% 57.00% 29.00% 38.33% 0.00% 0.00% NA

FT 23.33% 5.33% 8.67% 57.67% 29.00% 38.33% 38.00% 9.10% 15.00%

Figure 6: The comparison performances of p-FRMiner and FRMiner with the same volume of original training data.

Figure 7: The performances of FRMiner when generating different numbers of pairs.

Table 3: The performance achieved by different approaches for each project in cross-project validation

AngularJS Bootstrap Chromium

Approach

Performance

Precision Recall F1 Precision Recall F1 Precision Recall F1

FRMiner 85.23% 86.56% 85.89% 86.84% 85.89% 86.37% 85.87% 86.81% 86.34%
Our approach

p-FRMiner 31.03% 50.00% 38.30% 27.56% 69.08% 39.40% 16.00% 50.00% 24.24%

CNC 7.70% 44.44% 13.13% 16.38% 34.21% 22.13% 9.56% 67.00% 16.73%
Existing studies

FRA 13.67% 80.33% 23.35% 23.00% 48.67% 31.00% 12.00% 81.00% 20.00%

NB 16.00% 75.00% 26.00% 27.00% 36.00% 31.00% 7.00% 26.00% 12.00%

GBDT 18.00% 14.00% 16.00% 30.00% 11.00% 16.00% 20.00% 19.00% 19.00%

RF 28.00% 14.00% 19.00% 37.00% 9.00% 15.00% 12.00% 26.00% 16.00%
Text classification

FT 32.00% 19.00% 24.00% 43.00% 13.00% 20.00% 19.00% 11.00% 14.00%

from issue comments to chat messages by parameter-transfer and

fine-tuning [47]. Meanwhile, the rule-based classifier FRA achieves

the highest recall among the six baseline approaches. The average

recall is 70.00%, and it achieves 80.33% and 81.00% recall on Angu-

larJS and Chromium project respectively. Although the precision is

low, prediction results of FRA contain most of the actual feature
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dialogues, which means that the feature-request sentences in chat

messages also comply with FRA rules. As FRA utilizes rules instead

of supervised learning, it is easier and time-saving to apply in min-

ing massive chat messages. Meanwhile, we can take the high-recall

advantage of FRA to tackle with the cold start problem where no

annotated resources are provided in the beginning.

For text classification approaches, NB seems to be the best classi-

fier among all the text classification baselines. Although RF achieves

the highest 27.33% F1-score on average among the four approaches,

it encounters an underfitting problem on the Chromium project.

It can neither model the training data nor generalize to new data,

mainly due to the Chromium data is not large enough for RF model

to learn the relevant patterns. The reasons why FRMiner noticeably

outperforms the four traditional text classification models are: (1)

compared with traditional text-classifications, neural models have

a larger capacity which can achieve better performances, especially

for the complex dialog modeling task. (2) it is easier for the model

to identify whether two dialogues belong to the same class than

classifying every single dialog. (3) text classification algorithms

are not trained sufficiently from the small dialog datasets, while

FRMiner is a pair-wise approach that can augment the original

dataset dramatically which ensures the training to be sufficient.

Summary: FRMiner significantly outperforms two sentence-

wise baselines and four traditional text classification approaches.

As the two sentence-wise baselines can be directly applied to chat

messages and achieve relatively good recall, they have the natural

advantages over other approaches under the cold-start situation.

5.2 Answering RQ2

Figure 6 demonstrates the performance of p-FRMiner training by

single-dialogue instances and the performances of FRMiner train-

ing by the same sizes of pair-dialogue instances. The blue column

denotes the size of the training dataset for p-FRMiner, which is

the size of 2 folds of data. The orange column denotes the size

of pair-instances generated by the Siamese network. We can see

that when the sizes of training datasets are the same, FRMiner can

achieve much higher performances than p-FRMiner. The FRMiner

improves the Precision, Recall, F1-score over the p-FRMiner by

46.79%, 31.13%, 42.90% on average.

Figure 7 illustrates the relationship between performance en-

hancement and training pair-instances quantity, alongwith the time

cost on the training phase. The initial volumes (1x) are the original

sizes of training data shown in Figure 6, which are 379, 316, and 340

pairs. We can see that enlarging the size of training pair-instances

can moderately increase the model performances. When enlarging

the size of the training pair-instances from 1 to 30 times, the preci-

sion, recall, and F1-score increase 9.82%, 8.72%, and 9% on average.

We observe that the performance sharply increases when enlarging

the training dataset 5 times, and slowly increases from 5 times to

30 times on all the projects. The performances of the Chromium

project even slightly decline when enlarging by 20 times. While

the time cost on the training phase is linearly increased all the time.

Therefore, we consider that enlarging the training dataset 5 times

might be a trade-off choice between effectiveness and efficiency.

Summary: FRMiner can better resolve the classification task

than p-FRMiner by significantly improving the Precision, Recall,

F1-score by 46.79%, 31.13%, 42.90% on average. The results confirm

that it is easier for the model to recognize whether two dialogues

belong to the same class rather than classifying the exact class

directly when labeled dialogues are few. We consider 5 times to be a

trade-off choice between effectiveness and efficiency because after

enlarging the training dataset 5 times, the performances slowly

increase but the time cost rises largely.

5.3 Answering RQ3

Figure 8 presents the average performances achieved by different

approaches in the setting of cross-project validation, and Table

3 presents the detailed performances for each project. The best

results of precision, recall, and F1-score are highlighted in bold.

Note that the performances of CNC and FRA are the same with

3-fold intra-project validation due to the two approaches are not

trained by feature dialogues. We repeat their results in Table 2 for

comparison and analysis purposes.

We can see that FRMiner can also perform well in cross-project

settings. Performance only slightly declines by 2.27% over average

F1-scores compared with the result in intra-project validation. We

consider that dialogues expressing feature-requests share common

linguistic patterns across domains that are typically not relevant

with domain-specific concepts. The results show that FRMiner can

learn these common patterns and be generalized to other projects.

It indicates that developers express feature requests in a similar

way even in different communities and projects, and the feature

dialogues of different projects share similar patterns. We note that

p-FRMiner does not perform as good as within-project validation.

The average F1-score declines 10.51%.

For text classification approaches, NB achieves the highest F1-

score of 23%, and it only slightly declines 3.44% on average com-

pared with within-project validation. None of the text classification

approaches encounter an underfitting problem because the size of

the training dataset for cross-project validation is larger. In addi-

tion, we notice that most text classification approaches perform

better in cross-project evaluation than in intra-project evaluation

for Angular and Chromium. It is mainly due to two reasons: (1) The

cross-project training dataset involves two-project data while the

intra-project only has 2/3 data of one project. Training with a much

larger dataset results in a more robust classifier. (2) Cross-project

evaluation imports two projects for training while intra-project

evaluation only has one project. The wider scope of training dataset

would increase the generalizability of the classifier due to the biased

knowledge introduced by different projects.

Summary: FRMiner can also achieve high performance on un-

fitted projects, which indicates that FRMiner is generalizable to

other projects. We also observe that NB is the best classifier among

all the text classification baselines towards mining chat messages.

Figure 8: Average performances in cross-project validation
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6 DISCUSSIONS

Applicability. Our work can benefit in gathering crowd require-

ments by conveniently integrating FRMiner into the workflow of

the release-teammembers. First, the release team could build a chat-

message monitor or a crawler to collect the textual conversation

from the organization’s chatting platform periodically. Then an

automatic script [33] is applied to preprocess and disentangle the

raw chatting text. After that, by performing the inference process

mentioned in section 3.4 on the disentangled dialogues, FRMiner

can record all the dialogues that are likely to request features. The

release team could also subscribe to the monitoring results as an

RSS feed to receive hidden feature requests periodically. Besides,

due to people expressing feature dialogues in a relatively consis-

tent way, FRMiner users do not need to retrain the model quite

frequently. The retraining mainly need to be performed when the

amount or the quality of the dataset changes extraordinarily.

Extendibility.We notice that people express feature dialogues

in a relatively consistent way, for example, other than chatting mes-

sages, people also use similar expressions such as “need implement

sth. in next release version” and “sth. will be a solution/improvement”,

to indicate feature requests in other open-source platforms includ-

ing Github Issues and development emails. Hence, we argue that

our approach can be extended to other data sources. In addition,

FRMiner can be applied to the other languages since our deep con-

textual dialog model has a strong ability in capturing semantic

patterns. When switching to other languages, FRMiner users need

to adapt the pre-trained word embedding model to the specific

language. They also need to consider to apply extra preprocessing

according to the specific language, e.g., apply word segmentation to

Chinese corpus. Another limitation of FRMiner on language switch-

ing is related to the pre-trained dialogues disentanglement model. A

new dataset needs to be annotated for retraining the model, which

may involve a relatively high cost.

7 THREATS TO VALIDITY

External Validity. The external threats relate to the generalizabil-

ity of the proposed approach. All the three systems examined in this

work were open-source projects, which might not be representative

of closed-source projects. It is also possible that we accidentally

chose systems that have better or worse than average cross-project

feature requests detection performance. However, the cross-project

evaluation results show that our approach is generalizable on the

three studied projects, which largely alleviates the threat.

Internal Validity. The internal threats relate to experimental

errors and biases. Threats to internal validity may come from the

results of conversation disentanglement. The accuracy of disen-

tangled conversations has impact on our results. To reduce the

threat, when separating single conversations in a stream of chat

messages, we employed the state-of-the-art technique proposed

by Kummerfeld et al. [33], which outperforms previous studies by

achieving 73.5% F1-score and 91.5 VI2.

Construct Validity. The construct threats relate to the suitabil-

ity of evaluation metrics. We utilize precision and recall to evaluate

the performance, in which we use the manually labeled dialogues

2Variation of Information (VI) is a measure of information gained or lost when going
from one clustering to another

as ground-truth when calculating the performance metrics. The

threats might come from the process of manual inspection and

tagging. We understand that such a process is subject to mistakes.

To reduce that threat, we build two inspection teams to reach agree-

ments on different options.

8 RELATEDWORK

Our work is related to previous studies that focused on (1) detection

of feature requests; and (2) mining development communication

artifacts. We briefly review the recent works in each category.

8.1 Detection of Feature Requests

The amount of research on gathering and analyzing information

from a crowd to derive validated user requirements/feature requests

has increased significantly in the last years.

Di Sorbo et al. [58] proposed a taxonomy of intentions to clas-

sify sentences in developer mailing lists into six categories: feature

request, opinion asking, problem discovery, solution proposal, in-

formation seeking, and information giving. Although the taxonomy

has been shown to be effective in analyzing development emails and

user feedback from app reviews [48], Huang et al. [25] found that

it cannot be generalized to discussions in issue tracking systems,

and they addressed the deficiencies of Di Sorbo et al’s taxonomy

by proposing a convolution neural network (CNN)-based approach.

Arya et al. [6] identified 16 information types including poten-

tial new feature requests through quantitative content analysis

of 15 issue discussion threads. They also provided a supervised

classification solution by using Random Forest with 14 conversa-

tional features that can classify sentences expressing new feature

requests with 0.66 F1-score. Morales-Ramirez et al. [43, 44] identi-

fied requirement-related information in OSS issue discussion using

20 speech-act rules supported by NLP and linguistic parsing tech-

niques. Merten et al. [40] investigated natural language processing

and machine learning features to detect software feature requests in

issue tracking systems. Their results showed that software feature

requests detection can be approached on the level of issues and

data fields with satisfactory results. Merten et al. [41] also investi-

gated how requirements communicated in issue tracking systems

by manually reviewing 200 issues. They categorized the text and

reported on the distribution of issue types and information types.

Their results showed that information with respect to prioritization

and scheduling can be found in natural language data. Herzig et

al. [22] manually examined more than 7,000 issue reports, and dis-

cussed the impact of misclassification of bugs in the bug databases

of five open source projects. Their results showed that 39% of files

marked as defective actually new features, updates to documen-

tation, or internal refactoring. The authors suggested that human

should always be involved when dealing with the posted issues.

Antoniol et al. [5] investigated whether the text of the issues posted

in bug tracking systems is enough to classify them into corrective

maintenance and other kinds of activities. They alternated among

various machine learning approaches such as decision trees, naive

Bayes classifiers, and logistic regression to distinguish enhance-

ment apart from other issues posted in the system. Shi et al. [55]

proposed 81 fuzzy rules that can classify sentences in issues into

six categories: intent, benefit, drawback, example, explanation, and
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trivia. Their work designed to help understanding and analyzing

real intents of feature requests, which can also benefit the detection

of feature requests. Rodeghero et al. [39] presented an automated

technique that extracted useful information from the transcripts

of developer-client spoken conversations to construct user stories.

They used machine learning classifiers to determine whether a con-

versation contains user story information or not. Maalej and Nabil

[37] leveraged probabilistic techniques as well as text classification,

natural language processing, and sentiment analysis techniques to

classify app reviews into bug reports, feature requests, user expe-

riences, and ratings. Their results showed that the classification

can reach the precision between 70-95% and recall 80-90% actual

results. Other studies have been found to also capture user needs

from app reviews automatically [13, 26, 46, 62]. Vlas and Robinson

[63] proposed a grammar-based design of software automation for

the discovery and classification of natural language requirements

found in open source projects repositories. Cledland-Huang et al.

[12] designed an automated forum management (AFM) system,

which was used to automated detect duplicated feature requests

that have been already posted in the issue tracking systems. Shi et

al. [54] proposed an initial approach to automated identify feature

requests that ask for features that have been already implemented

by applying feature tree model. Summing up, previous approaches

differ from our work as it: identified feature requests from develop-

ment emails [25, 58]; identified feature requests from issue tracking

systems [5, 6, 22, 40, 41, 43, 44, 55]; identified user stories from

spoken conversations [39]; identified feature requests from app

reviews [13, 37, 46, 48, 62]; identified feature requests from project

repositories [63] detected duplicated feature requests [12] [54].

Our work differs from existing researches in that we focus on

detecting hidden feature requests from chat messages which post

different challenges as chat messages are informal, unstructured,

noisy and typically have insufficient labeled data than the previ-

ously analyzed documents. In addition, our work complements to

the existing studies on automated feature requests detection.

8.2 Mining Development Communication
Artifacts

Previous researches on development communication artifacts re-

ported that the usage of online chatting play an increasingly signif-

icant role in software development, and chat messages are a rich

source for valuable information about the software system. Lin et

al. [35] conducted an exploratory study on how developers use

Slack, which is a popular workplace chat app, and how they benefit

from it. Their research revealed that developers use Slack for per-

sonal, team-wide, and community-wide purposes, and Slack plays

an increasingly significant role in software development, replacing

email in some cases. Shihab et al. [56, 57] analyzed the usage of

developer IRC meeting channels of two large open source projects

from several dimensions: meeting content, meeting participates,

their contribution, and meeting styles. Their results showed that

IRC meetings are gaining popularity among open source develop-

ers, and highlighted the wealth of information that can be obtained

from developer chat messages. Yu et al. [66] analyzed the usage of

two communication mechanisms in global software development

projects, which are synchronous (IRC) and asynchronous (mailing

list). Their results showed that developers actively use both commu-

nication mechanisms in a complementary way. Chatterjee et al. [9]

conducted an exploratory study to investigate the usefulness and

challenges of mining developer conversations for supporting soft-

ware maintenance and evolution. They observed that developers

are likely to share opinions and interesting insights on tool usage,

best practices, and various technologies via instant conversations.

They also reported that it is feasible to achieve high accuracy in dis-

entangling conversations by adapting the techniques and training

sets. Alkadhi et al. [3, 4] identified five rationale elements which

are issue, alternative, pro-argument, con-argument, and decision

from chat messages that collected from three student projects. They

developed two supervised classifiers to automated detect rationale

elements on the manually labeled data. Wood et al. [65] discovered

26 speech act types in the chat conversations during bug repair, and

trained a supervised classifier to automatically detect these speech

acts. Chowdhury and Hindle [11] implemented machine learning

techniques to filter out off-topic discussions in programming IRC

channels by engaging StackOverflow discussions as positive exam-

ples and YouTube video comments as off-topic discussion examples.

The findings of previous work motivates the work presented in

this paper. Our study is different from the previous work as we focus

on detecting feature requests hidden in massive chat messages that

would be important and valuable information for OSS developers

to enhance their software.

9 CONCLUSION AND FUTUREWORK

In this paper, we proposed a novel approach, named FRMiner, which

can detect feature dialogues from chat messages via deep Siamese

network. In FRMiner, we incorporated two BiLSTM-based dialog

models with the Siamese network to learn the similarity between a

pair of dialogues rather than the class of a specific dialog. We eval-

uated FRMiner on a small sample of 1,035 dialogues taken from the

high-volume chat messages of three popular open-source projects.

The experimental results showed that our approach significantly

outperformed two sentence-wise classifiers and four traditional

text classification approaches with average precision, recall and F1-

score of 88.52%, 88.50%. and 88.51%. FRMiner can also achieve high

performance on unfitted projects, which indicated that FRMiner is

generalizable to other projects. The experimental results confirmed

that our approach could effectively detect hidden feature requests

from chat messages. We also observed that NB seems to be the

best classifier for chat messages among the four text classification

baselines. In the future, we plan to employ NLP summarization

technologies with our approach to extract a brief summary for de-

velopers, which can reduce the effort on reading feature dialogues.

Moreover, we plan to extend this work by not only classifying but

also recording feature requests in a well-designed and structured

format from chat messages.
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